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A new algorithm based on spectral element discretization and non-
oscillatory ideas is developed for the solution of hyperbolic partial
differential eqquations. A conservative fonmulation is proposed based on
cell averaging and reconstruction procedures, that employs a staggered
arid of Gauss: Chebyshev and Gauss- Lobatto Chebyshev discretiza-
tions. The non-oscitlatory reconstruction procedure is based on ideas
similar to those proposed by Cai et a/. (Math. Comput. 52, 389 {1989))
but employs a modified technique which is more robust and simpler in
terms of detesmining the location and strength of a discontinuity. it is
demonstrated through model problems of linear advection, inviscid
Burgers equation, and one-dimensional Euler system that the proposed
algorithm leads to stable, non-oscilfatory accurate results, Exponential
accuracy away from the discontinuity is realized for the inviscid Burgers
equation example, & 1993 Academic Press, Inc.

1. INTRODUCTION

Spectral element methods are high-order weighted
residual techniques for the solution of partial differential
equations typically encountered in fluid dynamics [14, 12].
Their success in the recent past in simulating complex flows
derives from the flexibility of the method in representing
accurately non-trivial geometries while preserving the good
resolution properties of spectral methods [117. In these
simulations, however, both the geometry and the solution
are deseribed through smooth functions so that spectral
clement methods can obtain exponential accuracy by fully
exploiting that regularity. There are numerous fuid
dynamics applications, however, where either very steep
gradients or cven jump-discontinuities are present, e.g.,
interfaces in multiphase Nows, flame fronts, or shocks in
compressible flows. A straightforward application of high-
order numerical methods in these situations is not possible,
as large errors induced by the discontinuity (Gibbs
phenomenon) propagate in the domain and eventually
render the solution with oscillations everywhere.

One approach to successfully simulating the aforemen-
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tioned complex flows is to use essentially non-oscillatory
pseudospeciral schemes developed for systems of hyperbolic
partial differential equations

u,+fiu), =0 (1)

(sce [2] for the case of Fourier method). The main idea is
to augment the spectral space by adding a non-smooth
function, representing discontinuity. A conservative scheme
can be obtained by defining cell averaged quantities in
following the work of Cai et al. for Chebyshev methods [ L1,
A staggered grid of Gauss—Chebyshev and Gauss-
Chebyshev-Lobatto collocation points is cmployed to
accomodate the cell averages and point values. Point values
are obtained from cell averages by using appropriate
reconsiruction  procedure {possibly essentially non-
osciliatory).

Although very accurate, the non-oscillatory spectral
methods described in these previous works are limited to
computational domains with highly regular nodal point dis-
tribution and periodic boundary conditions as in Fourier
method or more general boundary conditions but on a single
domain. In the current work we attempt to relax these con-
straints by substituting for the higher-order scheme a spec-
tral element discretization method {14, 12, In the spectral
element discretization the computational domain is broken
up o several subdomains (macro-clements) within which
data and unknowns are represented as spectral expansions
in terms of general eigenfunctions—solutions of the singular
Sturm-Liuville probilems, ie, Chebyshev polynomials,
Legendre polynomiais, etc. The discrete equations are
derived via variational statements, so that the unknowns at
each node represent values of the unknown field variable.
This approach and its variants [11, 16, 13] results in
exponential (spectral-like) convergence for infinitely
smooth solutions.

The main idea presented in this work is to modify the
Chebyshev Lagrangian interpolant basis of the spectral
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element formulation by adding a non-smooth function,
representing discontinuity. A new robust and efficient
technique is also proposed for estimating the discontinuity
location and strength. As a result the proposed non-
oscillatory reconstruction procedure implemented on a
staggered Chebyshev spectral clement grid leads to stable
solutions free of oscillations. The incorporation of a high-
order filter [20] results in recovering high-order accuracy
away from discontinuity.

The paper is organized as follows: In Section 2, we
introduce the basic ideas upon which our conservative
spectral clement formulation is based (cell averaging
and reconstruction procedures). In Section 3, the non-
oscillatory cell averaging and reconstruction are presented.
In Section 4, we describe the model problems used in this
work along with some additional aspects of reconstruction
{interfacial constraint). In Section 5, we describe the algo-
rithm and briefly review its components (time-marching
scheme, filter, flux Iimiter). Finally, results are presented in
Section 6, followed by a brief discussion in Section 7.

2. CELL AVERAGES AND RECONSTRUCTION:
SMOOTH FUNCTION

2.1. Cell Averages

In the general case that we consider in this work the nodal
points are distributed in a non-uniform manner and thus we
need to define appropriate cell averaged quantities. In
particular, adopting the terminology explained in Fig. 1 the
cell averaged velocity #, is given by

1 J.Jl' u(x, 1) dx.

i=i(x;, t)=——
4 ( 7 Xir — X vx,

(2)

Given this definition, Eq. (1) can be integrated along a cell
extending from i ~ to i ™ as

di, | flus)~ flu)
dt Ax;

i

, (3)

where we have also defined

Ax. = Xx;:

§ i —X;-—.

4)
The above equation therefore suggests that the fluxes f(u)

Cell
i

! |
I I

i it

FIG. 1. Cell averaged quantities are defined at the Gauss points j and
point values are defined at the Gauss-Lobatto points i.

should be evaluated at the ends of the cell using de-averaged
(reconstructed) velocity values; this formulation leads to the
conservative (or flux) form of the semi-discrete wave equa-
tion. In the following, we define cell averaged quantities for
two particular discretizations: first, spectral (Chebyshev)
discretizations; and sécond, spectral element {Chebyshev)
discretizations. Proceeding with the first case we refer to
Fig. 1, where the sct of points j denote the cell at which cell
averaged quantities are defined.

A spectral-Chebyshev expansion corresponds to a non-
uniform distribution of points with cells of variable size 4x;.
Following the formulation of Cai ez al. [1] we select the set
of points j to be the Gauss—Chebyshev points (see Fig. 2)
defined by
x;= —cos((j— 1/2) 48),

where AB8==a/N, 1<j<N,

(5)

and the end points i+, i~ of each cell are the

Gauss—Lobatto points defined as
x;= —cos(i 49), 0<igN.

(6)

Using these two sets of points and the definition (2), a
Chebyshev spectral expansion then of the form

N
u(xy= 3, a;Tulx), {7
k=0
after averaging becomes
N .
u(x)= Z ap Ti(x), (8)
k=0

where the cell averaged Chebyshev polynomial is given by

T():l (93)
T\ =Jo,U,(x} (9b)
Tk=%[O'kUk(x)—Uk_gkaz(x)} VkZZ, (90)
Af= n/N
o } ; et td
R S TP
x; = —cos{(j—0.5)m/N} j: 1£j£N

FIG. 2. Spectral Chebyshev method. The set of points f defines the cell
averaged quantities, while the point values i are used in evaluating the
fluxes.
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where

o= sin(k + 1.)(A9/2). (10)
(k+ 1) sin(46/2)

Here we have introduced U, (x)}= (1/{k+ 1)) T}, ,(x) to be

the second kind of the Chebyshev polynomials.

In the spectral element discretization the domain is
broken up into several macro-elements (Fig. 3) within
which the velocity is expanded in terms of Chebyshev poly-
nomials. Here, we establish the connection between the
local (elemental) reference system and the global (physical)
coordinate system. For the set of Gauss—Lobatto—
Chebyshev points their local coordinate in the kth element
is given by

(11)

which are related to the global coordinate x through the
equation

k k
X+ x5,
—_— 12
> 7 5 (12)
here x* and x% denote the left and right coordinates of the
elemental boundaries, and L, is the element length.

The interpolant of u(x) in the kth element is then
represented as

u(r) = i h(r%) uk. (13)
=0

Here, u* are nodal values of u, and 4, are shape functions
corresponding to element & and node i, with property
hi(rf)=4,, (where &; is the Kronecker-delta symbol).
Expressions for these Lagrangian interpolants (as well as
for their derivatives) in terms of Chebyshev or Legendre
polynomials can be found in [9]. In the kth element an
expansion of the form

N

w'(x) =} u;h;(x)

i=0

(14)

k-1 k k+1

Hofototototeispiotatotatotofefiotetetateteisy

J:1s18KN I':1 2 1% KN
' Im0E1 £ KN-1
FIG. 3. Spectral element Chebyshev discretization. J's are used for
global indexing of cell averaged quantities and Is, for global indexing of
point values.

defined on the Gauss—Lobatto—Chebyshev points after the
application of the averaging operator takes the form

*(x) = i s hi(x), (15)
i=0

where ¥* are the point values for element k and x refers
to the local coordinate; 4;(x) and #4,(x) are the Gauss—
Lobatto-Chebyshev—Lagrangian interpolant and its corre-
sponding cell averaged function obtained from

22X 1
hix)== 2 77 T(x) T, <ig 1
i(x) N,Eofsép (x) T(x), O0<i<N (16)
28 _ _
hi(x)=_ z TTp(xi) Tp(x)9 0-.<,_l-§._N, (17)
Np=Oci P

where ¢, =1 if n#0, N and ¢, =2 otherwise. In matrix form
the above cell averaging procedure can be written as

0<i<N, 0<j<N, (18)

where the cell averaging matrix is defined as A}j:ﬁ ()
here x, refers to a local coordinate. Based on the nodal cell
averaged values obtained from (18} the corresponding poly-
nomial can be constructed using Lagrangian interpolation;
Le.,

=k

 g;(x), (19)

u(x)=

=
-,

J=1

where the Gauss—Chebyshev-Lagrangian interpolant is
given by

—x2
gj(x)=(—1)f'“—Ll_i —T’j\(,x), 1<j<N. (20
7

Having constructed a cell averaging procedure for the
spectral element discretization we proceed next with the
inverse operation of de-averaging and recovering point
values for the evaluation of fluxes in Eq. (3).

2.2. Reconstruction and Point Values

The reconstruction operation can also be put into matrix
form. We consider first the polynomial describing the cell
averaged values,

N
a(x)= 3 @ g(x).

i=1

(21)
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An alternative to expression to (20) for the
Gauss—Chebyshev-Lagrangian interpolant is
N1
5= ¥ 5z T T (22)

We can also express the g;{x) in terms of the second kind
Chebyshev polynomials; to this end we recall that

T(x)=3[U(x})-U,_2x)], Vpz2. (23)
Using the above equation we can rewrite g (x) as
N-—1 ]
gi(x)= Y MU,x), 1<j<N (24)
p=0
Here we have defined
1
i;’,=ﬁ7’p(xj) for p=N-2,N-1 (25a)
[T (x)—T,.:(x)] for 0<p<N-3. (25b)

The interpolating polynomial corresponding to point
values ({Gauss—Chebyshev—Lobatto points) can then
constructed using the de-averaged Lagrangian interpolants
G, as

(26)

The cell averaged second kind Chebyshev polynomial is
obtained using the definition of Eq. (2) (see details in [1]),

U,(x)=0,U,x) (27)
with ¢, obtained from Eq. (10). To determine G;(x) there-
fore we consider (26)-(27) and (21)}-(24) and thus we
obtain

N—1 73]
Y LU x).

p= OGP

Gi{x)= (28)

To recover the point values u; we simply set x=x; in
the interpolating polynomial #(x). In matrix form the
reconstruction procedure (on an elemental level) can be
written in the form

(29)

— ok
;=8 i
where

(30)

Based on these N point values the interpolating polynomial
u(x) can then be constructed from Eq. (26). This local
reconstruction procedure is then repeated for all elements.
To form a global interpolating polynomial however we need
to impose a continuity condition at elemental interfaces as
we explain in the next section.

2.3. Interfacial Constraint

The interpolation polynomial #(x) constructed based on
the Gauss-Lobatto—Chebyshev points is of degree N while
the polynomial we obtain from the reconstruction proce-
dure is of degree (N—1). The additional information
needed to uniquely define w(x) comes from requiring con-
tinuity of the solution at the interfacial nodal points. For the
kth element for example we require that its rightmost nodal
value and the leftmost nodal value of element (k + 1) will be
equal (say, to some value u,). This can be accomplished for

(X + 1)th element by adding an extra term to the (¥ —1)th
order polynomial, as
k+1 A =k 4+ 1 ’ 5uk
W= TG+ (=N Th 75 B
where 6u* can be defined by
N
b =u,— ¥ @i tIG(—1) (32)

Here the coordinate re (—1, 1) refers to the local element
coordinate (see Section 2.1). Note that the expression
{1 —r) T'\(r) attains zero values at all the Gauss—Lobatto—
Chebyshev points of the {(k+1)th element except the
leftmost one. Therefore, implementing (31), (32) is equiv-
alent in practice to requiring only the leftmost point value to
be equal to ,. The rest of the point values of the (k + 1)th
element remain unchanged. The same will be true for the
kth element and its rightmost point value. The only
undetermined quantity is u,. The value of u, should be set
eitherto XY | & *'G, (41) orto XY, i G, {1) depending
on the directlon (i.e., sign of the advection velocity) of the
problem. We will elaborate on this peint in Section 4.

3. CELL AVERAGES AND RECONSTRUCTION:
DISCONTINUQUS FUNCTION

The main difficulty in applying spectral methods to
approximating discontinuous solutions is the Gibbs
phenomenon. If a discontinuous function is approximated
by a spectral expansion (Chebyshev, Fourier, etc.), the
approximation is only O(1/N) accurate in smooth regions
and contains (1) oscillations near the discontinuity.
When spectral methods are applied to partial differential
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equations with discontinuous solutions, the Gibbs phenom-
enon may aiso lead to numerical instability.

An interesting approach to construct a non-oscillatory
spectral approximation to a discontinuous function has
been recently proposed in [2]. Let u(x) be a piccewise C*®
function with a jump discontinuity at point x, and with a
jump [u#],,. The key idea in [2] was to augment the Fourier
spectral space with a sawtooth function. It was shown that
the approximation using the angmented spectral space will
be non-oscillatory if the sawtooth function approximates
the magnitude and the location of the discontinuity with
second-order accuracy. The discontinuity parameters can be
determined with specified accuracy based on the spectral
expansion cocfficients. More recently, it was pointed in [47]
that a first-order accurate approximation of discontinuity
magnitude also leads to non-oscillatory behavior.

In this work we extend this approach and apply it in the
context of the spectral element methodology. Let us denote
for simplicity the entire array of cell averages defined at the
Gauss—Chebyshev points (see [ig. 3) (regardless of which
element they belong to) by «,

where K is the number of spectral elements covering the
domain and N is the number of Gauss—Chebyshev points in
each element. We also denote by u, the entire array of point
values defined at the Gauss—Lobatto—Chebyshev points (as
shown in Fig. 3), i.e.,

u; for O0<I<KN.

3.1. Reconstruction of Point Values

We assume that the cell-averaged values of a discon-
tinuous function &, are given. Here we propose a new
non-oscillatory reconstruction algorithm based on a simple
and reliable procedure for estimating the discontinuity
parameters with specified accuracy and incorporating this
information in the numerical process. The main steps of the
algorithm are as follows:

ALGORITHM R

« Step 1. Find a cell J, such that

max

" —u =
47,11 g=1l AL

1Iﬂ.l'+1#-ﬁ.l—1|-

» Step 2. Determine the discontinuous component,

ﬂ.l,fl’ lf
i,

if J,+1<J<KN.

uJ‘I+la

+ Step 3. Determine the continuous component,

as=a,—u5 for 1<J<KN.

+ Step 4. Find 77, 7" such that J, denotes the cell corre-
sponding to the interval [x 1 X ;+] (thus define the
reconstructed values of the discontinuous part of the

solution),

u?:{ujpl,

Upits

if 0<I<IT
it I} <I<KN

» Step 5. Obtain point values uj from &5 using the
procedure presented in Section 2 (Eq. (26)).

« Step 6. Obtain

u=us+uj for 0SI<KN.

It is obvious that the pair of cell averagesu, _, and &, ,,
represents the discontinuity magnitude with first-order
accuracy. It has been shown in [10] (and it also follows
from the more general argument presented in [17]),
however, that three cell averaged values &, _,, #,, and
i, . contain information about the discontinuity location
up to second-order accuracy. However, our algorithm does
not require explicit information about the discontinuity
location. As a result, we obtain a very simple and reliable
algorithm for non-oscillatory reconstruction. The current
algorithm is based entirely on the cell averaged values in the
physical space and not on the coefficients of a spectral
expansion. Therefore, it fits naturally into the context of the
spectral element method.

3.2. Cell Averages

As in the smooth case we assume that the point values of
a function are known and that the function contains a single
jump discontinuity at the point x,. Again, we decompose a
given discrete function into two parts: discontinuous and
smooth. The smooth part can be averaged using the proce-
dure described in Section 2; the cell averages corresponding
to the discontinuous part can be computed directly using
the following algorithm:

ALGORITHM A.

+ Step 1. Find point values I}, J such that

« Step 2. Evaluate the discontinuous component

ud_{ml, if 0<I<IC
i=
u,:,

if IX<I<KN.
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« Step 3. Obtain the continuous component

w=u,—~ut for 0KI<KN.

« Step 4. For the cell corresponding to the interval
[x X 7, defined by J,, determine
TN if 1<J<J,

ﬂd_. ul:(xs_xl:)+u1_:'(xlf _xs)
b=

S
A A

if J,<J<KN.

Upr,

Kl

« Step 5. Evaluate &5 for 1<J< KN applying the
averaging procedure to u§ (0<I<KN) according
to (18).

« Step 6. Define &, =5+ 4 for 1 £ J<KN.

4. HYPERBOLIC EQUATIONS

We use three standard examples in order to present
numerical experiments with the aforementioned algorithm:
the linear advection problem and the inviscid Burgers
equation and then one-dimensional Euler equations of gas
dynamics.

4.1. Linear Advection
The model problem we consider is the initial value
problem given by
u, +au, =0,
u(x, 0) = ¢(x),
u(0, 1) =),

(33)

where ¢(x) and (¢) are given functions and a is a constant
representing the advection velocity. The interfacial condi-
tion is imposed according to the sign (direction) of the
advection speed as

_ uié-i-l,
u?_ uk
N

4.2, Inviscid Burgers Equation

il a<0,

if az=0. (34)

The model problem we consider is the initial value
problem for the inviscid Burgers equation,

uZ
(7).

u(x, 0) = ¢(x),
w(0, 1)y =(1).

(35)

581/107/1-2

Note, that the Burgers equation can be rewriften in
quasi-linear form as

u, +uu,=0. (36)

It is clear from (36) that u plays the role of the advection
velocity in this case. To impose the interfacial continuity
constraint we determine the direction according to the
Roe-speed (see [157)

k k+1
&=M, (37)
2
and thus
a1 T

7P if <0,
= 38
? {u’,‘v, if a=0. (38)

4.3, One-Dimensional Euler Equations of Gas Dynamics

The system of Euler equations for polytropic gas in one
dimension s given by:

u, + f(u) =0, (39)
with
I oq
u=|m|, f=| gm+P |, (40}
' E g(P+ E)
P=(y—I)E—ipg’), (41)

where p denotes density, ¢ is velocity, P pressure, E total
energy, m = pg is the momentum, and y is the ratio of the
specific heats of a polytropic gas. While the discretization of
the Euler system using the ceil-averaging approach is
straightforward, the imposition of the interfacial condition
requires further discussion.

Interfacial Condition. Consider the Jacobian matrix of
the system given by 4(u) = 6f/du. The right-eigenvectors of
A are

1 1
ri(w)={ g—c¢ |, nLw=| g |
H—qc 39
1
ryu)=| g+c |, (42)
H+gc
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where ¢ =, /yP/p is the speed of sound and the enthalpy H and can be transformed back to the physical variables by

is defined by

2
B @ 1. (43)
p y—1 2
The left-eigenvectors of A are
) === ( 2e+g(r— 12 1), %—1
W) =55 ety —1)35, —c—qr—1}y—1),
17, g2

[2(“)=? ¢ —(?—1)5,(?—1)61,—(?—1) ; (44)

1
O G VNS IS 1)

Let us denote the matrix of right-cigenvectors of the
Jacobian 4 = A(ii) as

R={r,(0), ry(u), r;(0)) (43)
and the matrix of left eigenvectors as
1,(a})
L=| L) ), (46)
I;(@)

where ii is Roe-averaged state between the states u%, and
ug ! (see [15]). Then

AL 00
L-4-R=10 4, 0], {47)

0 0 4

where the eigenvalues of A are given by
A=q—-c, ly=q, A=g+c (48)

The characteristic variables v =L -u can be introduced for
both states as

Vk+1=L'llk+l
o 0 (49)

K _ K
vy =L u}.

Then the values to be imposed at the interface can be
defined by

=1,23,

k+1 H
(Vy),-={(vg Via if A4,<0, ; (50)

(Vi) if 4,20,

(1)

u,=R.v.
A similar procedure can be used to impose Dirichlet
boundary conditions.

5. ALGORITHM

The main steps of the proposed spectral ¢lement non-
oscillatory algorithm are as follows:

« Step 1. Employ Algorithm A to evaluate field of
cell averages #,(0) on the Gauss—Chebyshev mesh
corresponding to the initial condition u(x, 0). (Apply
filtering to the smooth component if necessary.)

« Step 2. Compute the transportive fluxes f; at each
Gauss-Lobatto—Chebyshev point. (Apply flux limiters
if necessary.)

« Step 3. Advance (explicitly) the cell averages from the
previous time level # to obtain ;%"

« Step 4. Reconstruct point values &, from the cell
averages employing Algorithm R. (Apply fiitering to
the smooth component if necessary.)

» Step 5. If the target time is not achieved go to Step 2.
In this section we describe in some detail the time-

stepping procedure, filtering, and flux-limiting which are
used in the overall algorithm.

5.1. Time Discrerization

An explicit time-stepping scheme is used which
corresponds to the Adams—Bashforth scheme of order
M =1 (Euler), order M =2 or 3 in the form

At
Ax

g+l __ —n
Uy =u,;

Y B Ui —11-17%

Fg=0

(52)

where B, arc appropriate weight coefficients [6]. The
higher-order fluxes f, are computed at the Gauss—
Lobatto-Chebyshev points after point values have been
reconstructed from the cell averaged field 4.

5.2. Filter

In our experiments we used the filter developed recently
by Vandeven [20]. Tt is given by

(2p—1)! = o
ap(x)=1—mj'o [(l—0)]~'d,  (53)

where p is the order of the filter. This filter is very similar to
the raised cosine and sharpened raised cosine for p=3 and
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p=23, respectively (see [5] for the description of these
classical filters). It has been shown in [20] that pth-order
accuracy can be recovered away from discontinuities.

5.3. Flux Limiter

Here we describe a flux limiter used in our experiments.
Let us denote by

L _
ot=u,—u,_,

R _ -
of=u,—u,
and

Go=Us—U;_y
a_=uy_—U;_;

Q) =ty — Uy

Then we define

YL =max (0, min (1, -g%)),
L . a_y
¥, =max (O, min (1, EZ»)),

Y =min(¥f, ¥5)

and evaluate

uy=i,+ ¥t.s- (55)
Following a similar procedure we define
¥R = max (0, min (1, %)),
WX — max (0, min (1, ;—;)) (56)
PR =min(¥F, ¥§)
and evaluate
uf =i, +¥r. 6% (37
Finally, the flux is computed according to
fr=3Lf )+ fui) =g, (uf—ul)]),  (58)

where 4, is Roe-averaged state between u} and uF. Note the
apparent similarity of this limiter to Roe non-compressive
limiter (see [197]).

6. NUMERICAL RESULTS

In this section we will report several numerical
experiments with the developed algorithm, including
approximation resuits, linear advection, inviscid Burgers
equation, and the 1D Euler system analyzed in Section 4.
The time step used in all the experiments with- linear
advection, the inviscid Burgers equation, and the 1D Euler
system was chosen to be sufficiently small so that errors due
the spatial discretization are dominant.

6.1. Non-oscillatory Averaging and Reconstruction

Our first experiment is a static non-oscillatory averaging
followed by reconstruction. Given are the point values of
the function

u_1+coszy ’
where
n .
—(x=T7), if 0gx<5,
40
y=q. (59)
Z—d(x—9), if 5<x<10.

This function has a jump discontinuity at x, = 5. First, we
evaluate cell averages of a given discrete function using
Algorithm A, and then, we reconstruct the point values
from the cell averages using Algorithm R. In Fig. 4 we plot
on the logarithmic scale the errors corresponding to three
different discretizations. In each case the discretization

log{Error)

FIG. 4. Averaging and reconstruction of a discontinuous function (see
Section 6.1). Pointwise errors on the logarithmic scale, ¥ = 20, 40, 80, and
K=5.
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15 | —

0.5 - ' -

FIG. 5. Linear advection of a discontinuous solution, N= 64, K=1 at
time ¢ = 2.0. {Initial location of discontinuity at x =3.0.)

consists of five spectral elements (K = 5), with each element
containing N =20, 40, 80 points. The Vandeven filter of
orders p =5, 10, 20 was applied for each case, respectively,
to the Chebyshev spectrum of the smooth component
on each element both in averaging and reconstruction
procedure. This filtering was essential in order to
obtain an exponential accuracy shown in the Fig. 4 away
from discontinuity.

FIG. 6. Linear advection of a discontinuous solution, ¥ =40, K =5 at
time ¢z = 1.0. (Initial location of discontinuity at x = 5.0.)

6.2. Linear Advection of Discontinuous Solution

Consider the initial boundary_ value problem for the
linear advection problem (33) for xe [0, 10], a=1, and

b= {0.5 for

x5,
1.5 for x>5

In Fig. 5 we plot the numerical solution for N=64, K=1
{global spectral method) at time 7 =2.0. Although not to
severe this test validates our algorithm of Section 5. In Fig. 6
we plot the numerical solution to problem (33) with initial
conditions given by (59) for N =40, K=5 at time = 1.0,
and in Fig. 7 we plot the corresponding pointwise error. In
this case we see again that spectral convergence is obtained
away from the discontinuity. In particular, the upstream
part of the solution is resolved spectrally accurate, while
errors can propagate downstream in the advection direction
and affect the convergence rate. To recover faster con-
vergence everywhere, the errors in the near vicinity of the
shock as well as exactly at the shock might be removed
using the recently developed one-sided filters (see [3]).

6.3, Inviscid Burgers Equation
We consider the initial value problem in the interval

x e [0, 6] with initial conditions given by

u(x,0) = 0.3 +0.7 sin 53’3

This initially smooth problem develops eventually a shock
discontinuity in the solution. The exact sclution is easily

log{Error)

15 P U T IS ST R SRR |

FIG. 7. Pointwise error of the linear advection problem (previous

figure} at time r=1.0, K= 35, and ¥ = 20, 40, and 80.
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FIG. 8.
as the previous figure except time 1 =4.0.

obtained and is used for the testing of the proposed
algorithm.

In Fig. 8 we plot the solution for N=20, K=8§ at time
t=2.0 (a) and t =4.0 (b). The pointwise errors are plotted
on the logarithmic scale on Fig. 9 for K=8 and N =5, 10,
20. The Vandeven filter of orders 4, 8, and 16, respectively,
was used. In all these experiments the non-oscillatory
reconstruction was performed after the estimated discon-
tinuity magnitude became larger than 0.4, (We observed

log(Frror)
&
T

A2 ‘ ‘ . I . . . ! : . . L
0 2 4 &
x

FIG. 9. Errors in the solution of the inviscid Burgers equation. Initial

conditions given by u{x, 0)=0.3 + 0.7 sin(nx/3). Time t=20, N=5, 10,
20, and K =8.

S

05 - -

(a) Solution to inviscid Burgers equation for ¥ =20, K= 8§ at time ¢ = 2.0. Initial conditions given by u(x, 0} = 0.3 + 0.7 sin{nx/3). (b) Same

that the results are not very sensitive to the particular value
of the threshold.) Also, the limiter described in Section 5.3
was employed here in the interval of 10 gridpoints around
the cell containing discontinuity (except at points next to
that cell—one on cach side). In order to avoid any influence
of non-positive time stepping (as Adams—Bashforth is)
around the shock we used forward Euler time stepping to
advance cell averages. We found in our experiments with
this example, that applying the globa/ Chebyshev spectral
method with non-oscillatory reconstruction and filtering
the spectrum of the smooth part resulted in a very poor
accuracy (O(1) error) in the large part of the domain. This
seems to be related to the creation of shock in this case.
Large differences occur between several cell averaged values
at that time. However, our non-oscillatory reconstruction
method treats only three subsequent cells. Applying flux
limiters in this part of the domain restores algebraic con-
vergence there. Employing spectral elements leads to
localization of this region within one element, as we observe
in Fig. 9.

6.4. One-Dimensional Euler Gas Dynamics Equations

Here we present our numerical experiments with the test
problem considered in [1,4]. We consider the following
initial condition for (39),

p,=3.857143, g,=2.629367,
P,=10.33333, —5gxg —4,

. (60)
p.=1+¢sin ax, g,=0, P =1,

—4<x<5,
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where ¢ =0.2. The solution to {60) models the interaction
between a moving shock and sinusoidal density disturban-
ces (see [1, 4]). In Fig. 10a we display the density profile for
N=10 and K=22 {corresponding to 199 grid points) at
time ¢=1.8. The discontinuity cell was located using the
momentum equation. For comparison we also plot the
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FIG. 10.

solution obtained by the second-order MUSCL scheme
with N =200 in Fig. 10b. Figures 10{(c)-(e) present our
experiments with the same problem, but with N =5 and
K=55 (221 grid points). Observe that the fourth-order
approximation is sufficient in this case to capture the
essential features of the solution for all the variables
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{a) Interactions between a shock wave and density waves with N =10, X' =22 (199 grid points) at time ¢ = 1.8. The solid represents the solution

obtained by the third-order ENO finite difference method with 1200 grid points {courtesy of Wai-Sun Don and David Gottlieb, Brown University). The
cireles correspend to our solution. (b) The same problem as in the previous figure. Result obtained by a second-order MUSCL scheme using 200 grid
points (courtesy of Wei Cai and Chi-Wang Shu). (¢) The same problem as in the previous figure, except for N =35, K =55 (221 grid points). (d) Velocity
plot corresponding to the same case as in the previous figure. {¢) Pressure plot corresponding to the same case as in the previous figure. (') The same
problem as in the previous figures, except for N =20, K =15 (286 grid points).
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P {pressure)

o({density)

FIG. 10—Continued

(density, velocity, and pressure). Fig. 10f corresponds to the
experiment with the same problem with N =20 and k=15
(286 grid points).

7. DISCUSSION

In this work we have formulated and tested an algorithm
based on spectral element discretization and essentially
non-oscillatory approximations concepts. The results show
that this approach leads to a stable method, capable of
producing very accurate solutions away from discon-
tinuities. The convergence of the method in a small
neighborhood around the shock is still of low-order,
however recent developments of one-sided filters [3, 18]
will allow us to recover accuracy in the shock region too.
The multi-domain algorithm we present here can easily
accomodate such implementations.

The method is capable of resolving very accurately fine
structures arising from interactions of shocks with distur-
bances (see Fig. 10}. Such structures correspond to a
wide spectrum of frequencies and are typical in shock
wave/boundary layer interactions encountered in simula-
tions of compressible turbulence. The generalization of the
present method for the case of multiple discontinuities is
straightforward. However, the method in its current form is
not capable of treating rarefaction waves due to the artificial
compression introduced by the method at discontinuities.

Recent work using spectral element discretizations and
flux corrected transport (FCT) limiters {7, 8] shows a clear
superiority of high-order methods in resolving shock waves
(representing them by transition layers of one to two

meshpoints wide) and rarefactions. However, the spectral
accuracy of these methods in the smooth regions is ques-
tionable. Currently we are working on a hybrid algorithm
based on FCT limiters and non-oscillatory approximations,
which will allow us to obtain sharp shocks and treat rarefac-
tions properly, while at the same time obtain good accuracy
away from discontinuities.

As regards the computational complexity of the method,
the cell-averaged formulation is as efficient as the pointwise
formulation in one space dimension. In two and three
space dimensions, the cell-averaged formulation becomes
more costly than the pointwise formulation. However,
the cell-averaged formulation may still be desirable in the
latter case because of its genuinely multi-dimensional
character [8].
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